Extensions 1→N→G→Q→1 with N=C3×A4 and Q=C32

Direct product G=N×Q with N=C3×A4 and Q=C32
dρLabelID
A4×C33108A4xC3^3324,171

Semidirect products G=N:Q with N=C3×A4 and Q=C32
extensionφ:Q→Out NdρLabelID
(C3×A4)⋊1C32 = A4×He3φ: C32/C3C3 ⊆ Out C3×A4369(C3xA4):1C3^2324,130
(C3×A4)⋊2C32 = C3×C32⋊A4φ: C32/C3C3 ⊆ Out C3×A454(C3xA4):2C3^2324,135

Non-split extensions G=N.Q with N=C3×A4 and Q=C32
extensionφ:Q→Out NdρLabelID
(C3×A4).1C32 = C3×C9⋊A4φ: C32/C3C3 ⊆ Out C3×A4108(C3xA4).1C3^2324,127
(C3×A4).2C32 = C62.25C32φ: C32/C3C3 ⊆ Out C3×A4543(C3xA4).2C3^2324,128
(C3×A4).3C32 = A4×3- 1+2φ: C32/C3C3 ⊆ Out C3×A4369(C3xA4).3C3^2324,131
(C3×A4).4C32 = C62.9C32φ: C32/C3C3 ⊆ Out C3×A4549(C3xA4).4C3^2324,132
(C3×A4).5C32 = A4×C3×C9φ: trivial image108(C3xA4).5C3^2324,126

׿
×
𝔽